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CHANNEL FLOW OF AN ANISOTROPICALLY CONDUCTING MEDIUM IN A ZONE

OF ENTRY INTO A MAGNETIC FIELD

A, B. Vatazhin and E. K. Kholshchevnikova
Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki,

A congiderable number of papers are devoted to the problem of
the deformation of a plane flow of a conducting liquid moving
through a channel [x] < =, 0 =y = h = const in a zone of entry into
a magnetic field B = (0,0, Ban()), where n(x)is the Heaviside unit
function((x) = 0 for x < 0 and 7(x) = 1 for x > 0). Apparently the
first paper in this direction was that of Shercliff [1, 2] in which the
asymptotic (for X > ) profile of a perturbed velocity was - determin~
ed for a flow of an isotropic conducting liquid in a channel with non-
conducting walls, The flow considered by Shercliff takes place in
magnetohydrodynamic flowmeters, Complete calculation of the per-
turbed flow of an isotropic conducting liquid in the channel of a mag-
netohydrodynamic generator is carried out in [3]. Asymptotic velocity
profiles in the channel of a magnetohydrodynamic generator, with
ideally segmented electrodes and the flow of an anisotropically con-
ducting medium along them, were found in [4]. General formulas
for the calculation of the asymptotic velocity profile, from the known
distribution of the perturbing forces along the channel, are presented
in [5). In [6, 7] the Green function is proposed for the solution of the
equation for the stream function of the perturbed flow. Finally, in
[8], the solution for the perturbed flow of an anisotropically con-
ducting liquid in a channel with continuous electrodes is described
by means of the Green function, and the asymptotic profiles of the
velocity are calculated.
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In this paper the flow of ananisotropically conducting liquid is
determined in a channel with ideally segmented electrodes. The
solution is set up with the aid of the Fourier method. The resulting
series, in which the slowly converging part can be related to the
asymptotic profile [4] calculated from the solution of an ordinary
differential equation, make it possible to determine the velocity
field rapidly. A detailed deformation pattern of the velocity pro-
file is set up. Certain general properties of the flow in a zone of
entry into a magnetic field are noted; with the aid of these it is poss-
ible to discover the error in the calculations [8].

Let us consider the flow of an incompressible (p =
= const) liquid in a channel |x|< ©, 0 =y =<1 within a
transverse magnetic field b(x) = n(x). The flow, which
is not perturbed by the magnetic field, is assumed to
be homogeneous: p = (1,0,0), p =p, = const, while the
magnetic Reynolds numbers are small. Such a flow
is described by the following system of equations:
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In system (1), (2) the longitudinal and transverse
velocities u and v, the pressure p, the magnetic field
b, the coordinates x and y, the current j and the po-
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tential @ are referred to the velocity U that is aver-
aged across the section, to the velocity head p U, to
the characteristic field B, to the height h of the chan-
nel, and to the quantities cUB,/c and UBh/c respect-
ively. The scalar conductivity ¢ and the dimensionless
Hall parameter 8 (e and m are the charge and mass
of an electron, T is the average time between electron
collisions, c is the velocity of light in vacuum) are
assumed to be constant.

If the parameter N of magnetohydrodynamic inter-
action is small, the solution of system (1), (2) by the
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generally used method can be sought in the form of
the following series:

v=1 4Ny, +.., v=~Nv +Nv, + ...,
P =po +Npy +es
i=h+Njp+.no=q +No, +....  (3)
The distribution of the electric current j; and the

potential ¢, in the zeroth approximation is found from
system (2) in which we must put v =0, u=1. The
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known solutions of such a system are listed in [9,10].
The perturbations (of first order of smallness) of the

gasdynamic parameters are determined from the sys-

tem
du. Bp i [} s
5;1 : = b]uo’ azl + Pl “—b]xm
6u1+0;;__ =t =p=0 (r5>—00). (4

For the stream function ¥(x,y), from (4) without
any difficulty we find the equation

Ap= 314 Gt oy 03/2 = S Tao gz dz =i

e e
[P (2, ) [<C =const  (z-> o). (5

Equation (5) was given by Shercliff [2].
If b{x) = n(x), the integral on the right side of Eq.
(5) equals jxo(o, y) for x> 0; it is zero for x < 0 and
Ap=0 (=<0), Ap=ju (0, ) =>0. (6)

Solution (6) is sought in the form of the series

Y= 2! ¥’ (@) sinkny (=<0),
k=0

Y= NP @) sinkny  (@>0);

h=1

The coefficients zp‘i{ and ¢§;, in accordance with (6),
satisfy the equations

Yo — k2, = 0 (z<C 0),
B — Bt = fi (0> 0),

P (0) = 1> (0), % (0) = > (0) - (M
(jxo (Ov y) = Jz fk sin kng’
=1,
fi=2 720 (0, g) sin ey ). ®

The boundary conditions at the point x = 0 are ob-
tained from the condition of continuity for the velo-
cities u and v when x = 0. At infinity (|x[ — «) the
functions ¢_and ¥, must be finite.

After solving (7) we find
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z>0

Y=— 2 Zk];l:'tz @—e"™)sin kry
L=

= — Z Je (2—-6‘ ™) cos by . (9)

We draw attention to the fact that to calculate the
velocity field for b(x) = n(x) we must know only the
quantity jXO(O,y). This is explained bythe circumstance
that, owing to the conservation of the electromagne-
tic force on the left and on the right of the section x =
= 0, the vorticity w = dv{/0x — duy/dy is zero for x <
< 0 and is maintained along the streamlines (which in
the zeroth approximation coincide with the straight
lines y = const) for x > 0. But the variation of the vor-
tex on the line y = const in the section x = 0 equals
— jxp(0,y). Thus, the distribution of the vortex over
the entire channel (and hence, over the velocity field)
become known, if the axial current jg (0,y) is given.
Mathematically this is shown in Eq. (6).

The velocity of flow uye,y) = u,(y) for x —

— o, according to (9), is expressed by the formula

ut (y) = S‘ - coskmy . (10)
) l
But from (8) we have
y ®
Sfxo 0 ydy=uw' @+ 2 . 1y
[ k=1

Taking into account the circumstance that the
velocity u'll', averaged across the section of the chan-
nel, is zero, from (11) we obtain

Y 1

u* (1) = {0 (0, 9) dy— § (§fx,, 0, %) dy)dy. (12)

0

Thus, the asymptotic profile of the velocity is determined by
means of elementary integration. The found function ufy) can then
be used to speed the calculations, since it (see [10]) replaces the
slowly converging part in formula (9).

We note that according to (12) uf(0) = uf (1), if the current
xo averaged for the section x = 0 is zero, This condition is always
satisfied, if the walls of the channel for x < 0 are nonconducting
and j,,=> 0 for x — —eo, Therefore the graph of the asymptonc velo-
city given in [8], from which it follows that uf (0) = uif (1) (al-
though the above-mentioned condition is satisfied), is incorrect,

It can also be shown that for a channel with nonconducung walls
the quantity uf(0) = u (1) =ty equals q = Q(cB.‘thz/cz) , where Q
is the joulean dissipation in the channel, calculated from the current
distribution in zeroth approximation,

We also note that, as follows from formulas (9), the axial velo-
city at the sectionx = 0 issmallerby a factor of two'than the velo-
city for x «=» =,

Let us consider the flow of an anisotropic conducting liquid in a
channel whose walls are ideally segmented electrodes for x > 0, with
the condition iy = —{1 — K) = const satisfied for them, and which are
nonconducting for x < 0. The quantity K= 1 represents a load param-
eter, '

The distribution of electric currents in such a channel for b(x) =
=1(x) is found in [11]. The quantity j4(0,y) is represented by the
formula
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. K 2 my \1-2v
w0 =[] ]

v=% arctg % (0 <<v<0,5),

K
o (0, )= Intg - (3=0). (13)

For K = 0 the solution corresponds to the conditions of a short
circuit; for K = 1 it corresponds to the conditions of idling, where
the distribution of electric current becomes the same as in a channel
with nonconducting walls.

The Fourier coefficients (8) corresponding to this current distri-
bution were found by numerical integration,

We present certain results of the calculation for the case K = 1.
The velocity profiles at the section x = =0, 1 for various B are shown
in Fig. 1. For B # 0 the flow ceases to be symmetric about the axis
y = 1/2. The derivatives du,/0y on the walls are zero. This is con-
nected with the fact that the vorticity w is zero for x < 0, while on
the walls w = =9y, /3y,

The profiles uy(0, y) and u(0. 5, y) are shown, respectively, in
Figs, 2 and 3, As was shown earlier, (0,y) = 0. 5uf(y).~ where
u;*(y) is the asymptotic velocity profile. For x > 0 the derivative
0y, /Ay on the lower wall passes to infinity. This is explained by the
fact that w(x,0) = —jx0(0,0) = +® for x > 0. Since w(X,1) =
= =jxo(0, 1) # o« for B # 0, the derivative dy, /8y on the upper wall is
finite, As the Hall parameter increases, the velocity perturbations
decrease in absolute value. Figure 4 shows the velocity distribution
along the upper and lower walls, Forx = lthe quantity u hardly
differs from its asymptotic value uf. We note, however, that as
the Hall parameter 8 increases, the convergence to asymptotic
values becomes slower,

Since on the walls jy = 0 (for K = 1), in accordance with the
first equation in (4), we have p; = —u; for y =0 and y = 1. Thus the
pressure losses in the channel equal p1(°°) = =uf(0) = —~ww". The
quantity ww?, as was shown above, equals the dimensionless joul-
ean dissipation q. The relationship q(8) is shown in Fig. 5. Here the
dashed line shows the function q(B) obtained in [12], in which, in
contrast to [11], the electric field in a channel with nonconducting
walls was calculated by the Fourie . method. The divergence of the
curves is apparently explained by the insufficient accuracy of the
calculations in [12]. (In [12]the problem is reduced to the solution
of an infinite system of algebraic equations which is replaced by a
finite system of the same order for all B, At the same time we know
that, as a rule, the convergence of various approximate methods is
impaired as B increases. )

If K# 1, on the walls p; = —u; for x <0 and p; = —u; — (1 — K)x

for x > 0. Inthe region of asymptotic flow p;* =—u"(0) — (1 ~K)x. The
quantity uf(0)inthis formula is K times smaller than that given inFig. 5.
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